Math 10B - Calculus of Several Variables II - Winter 2011
March 9, 2011
Practice Final

Name: \qquad

There is no need to use calculators on this exam. All electronic devices should be turned off and put away. The only things you are allowed to have are: a writing utensil(s) (pencil preferred), an eraser, and an exam. All answers should be given as exact, closed form numbers as opposed to decimal approximations (i.e. π as opposed to $3.14159265358979 \ldots$...). Cheating is strictly forbidden. You may leave when you are done. Good luck!

Problem	Score
1	$/ 10$
2	$/ 10$
3	$/ 20$
4	$/ 20$
5	$/ 20$
6	$/ 20$
7	$/ 20$
9	$/ 20$
10	
11	
Score	

Problem 1 (10 points). Compute the following integral:

$$
\int_{0}^{\frac{\pi}{2}} \int_{y}^{\frac{\pi}{2}} \sin x^{2} d x d y
$$

Draw the region of integration.

Problem 2 (10 points). Find the volume of the region bounded by $z=x^{2}+y^{2}-1$ and $z=1-x^{2}-y^{2}$.

Problem 3 (20 points).
(a) (10 points) Compute the Jacobian $\frac{\partial(x, y)}{\partial(r, \theta)}$ for changing Cartesian coordinates to polar coordinates.
(b) (10 points) Let D be the region bounded by $x^{2}+y^{2}=5$ where $x \geq 0$. Compute the integral

$$
\iint_{D} e^{x^{2}+y^{2}} d A
$$

Problem 4 (20 points).
(a) (10 points) Parametrize the circle of radius r.
(b) (10 points) Use this parametrization to show that the circumference of the circle of radius r is $2 \pi r$. (Hint: Use arclength.)

Problem 5 (20 points). Let C be the boundary of the region bounded by $y=x^{2}$ and $x=y^{2}$, oriented counterclockwise.
(a) (10 points) Compute the integral

$$
\oint_{C} \arctan x^{3} d x+\ln \left(y^{2}+1\right) d y .
$$

(b) (10 points) Compute the integral

$$
\oint_{C} y d x-x d y
$$

Problem 6 (20 points). Determine whether the following vector fields are conservative. Find a scalar potential function for the ones that are conservative.
(a) (10 points)

$$
\overrightarrow{\mathbf{F}}(x, y)=\left(2 x \sin y, x^{2} \cos y\right)
$$

(b) (10 points)

$$
\overrightarrow{\mathbf{G}}(x, y, z)=(y+z, 2 z, x+y)
$$

Problem 7 (20 points). Let f be a \mathcal{C}^{1} function on some region $D \subset \mathbb{R}^{2}$, and consider the surface given by $z=f(x, y)$. Show that the surface area of this surface is given by

$$
S . A .=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

Hint: Recall that surface area is given by

$$
S . A .=\iint_{\mathbf{X}} d \mathbf{S}
$$

where \mathbf{X} is a parametrization of the surface.

Problem 8 (10 points). Let S denote the closed cylinder with bottom given by $z=0$, top given by $z=7$, and lateral surface given by $x^{2}+y^{2}=49$. Orient S with outward normals. Compute the following integral:

$$
\iint_{S}(-y \hat{i}+x \hat{j}) \cdot d \mathbf{S} .
$$

Problem 9 (20 points). Let S be the sphere given by $x^{2}+y^{2}+z^{2}=1$ with outward pointing normals.
(a) Let $\mathbf{F}(x, y, z)=\left(2 x y z+5 z, e^{x} \cos y z, x^{2} y\right)$. Compute

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

(b) Let $\mathbf{G}(x, y, z)=(x, y, z)$. Compute

$$
\iint_{S} \mathbf{G} \cdot d \mathbf{S} .
$$

Hint: The volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.

Problem 10 (20 points). Verify that Stokes' theorem implies Green's theorem. Hint: Use the vector field $\mathbf{F}(x, y, z)=$ $(M(x, y), N(x, y), 0)$.

Problem 11 (Extra Credit). Derive the 4 dimensional version of spherical coordinates, given by $(\rho, \theta, \phi, \eta)$, and compute the Jacobian of the transformation from Cartesian coordinates (x, y, z, t) to these coordinates, i.e. compute $\frac{\partial(x, y, z, t)}{\partial(\rho, \theta, \phi, \eta)}$

